
Stereoselective 6π-Electron Electrocyclic
Ring Closures of 2-Halo-Amidotrienes
via a Remote 1,6-Asymmetric Induction
Ryuji Hayashi, Mary C. Walton, Richard P. Hsung,* John H. Schwab, and
Xueliang Yu

DiVision of Pharmaceutical Sciences and Department of Chemistry, UniVersity of
Wisconsin, Madison, Wisconsin 53705, United States

rhsung@wisc.edu

Received November 6, 2010

ABSTRACT

A diastereoselective 6π-electrocyclic ring closure employing halogen-substituted 3-amidotrienes via a 1,6-remote asymmetric induction is
described. This new asymmetric manifold for pericyclic ring closure further underscores the significance of the allenamide chemistry.

Identifying a highly stereoselective manifold for 6π-electron
electrocyclic ring closure of 1,3,5-hexatrienes remains a
challenge in the field of pericyclic processes.1,2 We recently

reported that a 1,3-H shift of allenamides 13,4 provides an
excellent entry to amidotrienes 2, which could undergo 6π-
electron pericyclic ring closure.5,6 The ring closure could
be rendered in tandem with the 1,3-shift,5,6 leading to the
facile construction of rare chiral cyclic amidodienes 3
[Scheme 1].7,8 While we were able to demonstrate the
possibility of attaining a stereoselective ring closure using
2, the level of selectivity was very modest. However, these
efforts unveiled an invaluable opportunity not only to develop
a new and attractive template for conducting stereoselective
6π-electrocyclic ring closures but also to achieve a highly
challenging 1,6-asymmetric induction.9 Consequently, we
examined isomerizations of 1 via electrophilic halogenations,
leading to 2-halo-amido-trienes 5 through N-acyl iminium
ions 4.

We recognized two distinct advantages of this electrophilic
isomerization over the thermal one:3b,5,10,11 (i) installing a

(1) For reviews for pericyclic ring closures, see: (a) Marvell, E. N.
Thermal Electrocyclic Reactions; Academic Press: New York, 1980. (b)
Okamura, W. H.; de Lera, A. R. In ComprehensiVe Organic Synthesis; Trost,
B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon Press: New York, 1991;
Vol. 5, pp 699-750. For reviews on ring-closure in natural product
synthesis, see: (c) Pindur, U.; Schneider, G. H. Chem. Soc. ReV. 1994, 409.
(d) Beaudry, C. M.; Malerich, J. P.; Trauner, D. Chem. ReV. 2005, 105,
4757.

(2) For recent examples of 6-π-electron electrocyclic ring closures of
1,3,5-hexatrienes, see: (a) Bishop, L. M.; Barbarow, J. E.; Bergmen, R. G.;
Trauner, D. Angew. Chem., Int. Ed. 2008, 47, 8100. (b) Sofiyev, V.; Navarro,
G.; Trauner, D. Org. Lett. 2008, 10, 149. (c) Kan, S. B. J.; Anderson, E. A.
Org. Lett. 2008, 10, 2323. (d) Hulot, C.; Blong, G.; Suffert, J. J. Am. Chem.
Soc. 2008, 130, 5046. (e) Benson, C. L.; West, F. G. Org. Lett. 2007, 9,
2545. (f) Pouwer, R. H.; Schill, H.; Williams, C. M.; Bernhardt, P. V. Eur.
J. Org. Chem. 2007, 4699. (g) Jung, M. E.; Min, S.-J. Tetrahedron 2007,
63, 3682. For examples on accelerated ring closures of 1,3,5-hexatrienes,
see: (h) Sünnemann, H. W.; Banwell, M. G.; de Meijere, A. Eur. J. Org.
Chem. 2007, 3879. (i) Tessier, P. E.; Nguyen, N.; Clay, M. D.; Fallis, A. G.
J. Am. Chem. Soc. 2006, 128, 4946. (j) Huntley, R. J.; Funk, R. L. Org.
Lett. 2006, 8, 3403. (k) Yu, T.-Q.; Fu, Y.; Liu, L.; Guo, Q.-X. J. Org.
Chem. 2006, 71, 6157. (l) Magomedov, N. A.; Ruggiero, P. L.; Tang, Y.
J. Am. Chem. Soc. 2004, 126, 1624.

(3) For a leading review on allenamide chemistry, see: (a) Hsung, R. P.;
Wei, L.-L.; Xiong, H. Acc. Chem. Res. 2003, 36, 773. For general reviews
on allenes, see: (b) Krause, N.; Hashmi, A. S. K. Modern Allene Chemistry;
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2004; Vols. 1 and 2.
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halogen substituent at the C2-position of amidotrienes 5
allows for strategic functionalizations at C1 of 6 that is
originally the central allenic �-carbon; and (ii) more impor-
tantly, the halogen atom can serve as a key chirality relaying

element in the ring closure to achieve the desired 1,6-
asymmetric induction. We envisioned that a disrotatory ring
closure through amidotrienes 7 in the upward direction could
be significantly favored with enhanced steric interaction
between the R1 group on the chiral amide and R3 [H versus
X] on the triene. We disclose here our success in developing
a stereoselective 6π-electron pericyclic ring closure of
halogen-substituted amidotrienes via a 1,6-remote asym-
metric induction.

Our efforts commenced with electrophilic brominations
of the R-benzyl-substituted allenamide 812,13 as summarized
in Table 1. Initial attempts involved reacting 2 equiv of

allenamide 8 with pyridinium tribromide salt 9 in the
presence of 4 Å MS in CH2Cl2, and the desired 2-bromo-
amidodiene 1014 was found in an encouraging 96% yield
with exclusive E-stereoselectivity [entry 1]. In this reaction,
4 Å MS was utilized as a neutral acid scavenger for the
corresponding byproduct HBr.15 However, yields dropped

(4) Given the large volume of recent activities in allenamide chemistry,
for reports in 2009 and 2010, see: (a) Lohse, A. G.; Krenske, E. H.; Antoline,
J. E.; Houk, K. N.; Hsung, R. P. Org. Lett. 2010, ASAP (DOI: 10.1021/
ol1023745) . (b) Beccalli, E. M.; Bernasconi, A.; Borsini, E.; Broggini, G.;
Rigamonti, M.; Zecchi, G. J. Org. Chem. 2010, 75, 6923. (c) Hill, A. W.;
Elsegood, M. R. J.; Kimber, M. C. J. Org. Chem. 2010, 75, 5406. (d)
Persson, A. K. Å.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2010, 49, 4624.
(e) Krenske, E. K.; Houk, K. N.; Lohse, A. G.; Antoline, J. E.; Hsung,
R. P. Chem. Science 2010, 1, 387. (f) Danowitz, A. M.; Taylor, C. E.;
Shrikian, T. M.; Mapp, A. K. Org. Lett. 2010, 12, 2574. (g) Zbieg, J. R.;
E.; McInturff, E. L.; Krische, M. J. Org. Lett. 2010, 12, 2514. (h) Cordier,
P.; Aubert, C.; Malacria, M.; Gandon, V.; Lacôte, E. Chem.sEur. J. 2010,
16, 9973. (i) Kimber, M. C. Org. Lett. 2010, 12, 1128. (j) Hashimoto, K.;
Horino, Y.; Kuroda, S. Heterocycles 2010, 80, 187. (k) Persson, A. K. Å.;
Johnston, E. V.; Bäckvall, J.-E. Org. Lett. 2009, 11, 3814. (l) Skucas, E.;
Zbieg, J. R.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 5054. (m)
Armstrong, A.; Emmerson, D. P. G. Org. Lett. 2009, 11, 1547. (n) Beccalli,
E. M.; Broggini, G.; Clerici, F.; Galli, S.; Kammerer, C.; Rigamonti, M.;
Sottocornola, S. Org. Lett. 2009, 11, 1563. (o) Broggini, G.; Galli, S.;
Rigamonti, M.; Sottocornola, S.; Zecchi, G. Tetrahedron Lett. 2009, 50,
1447. (p) Lohse, A. G.; Hsung, R. P. Org. Lett. 2009, 11, 3430. (q) Lu, T.;
Hayashi, R.; Hsung, R. P.; DeKorver, K. A.; Lohse, A. G.; Song, Z.; Tang,
Y. Org. Biomol. Chem. 2009, 9, 3331.

(5) Hayashi, R.; Hsung, R. P.; Feltenberger, J. B.; Lohse, A. G. Org.
Lett. 2009, 11, 2125.

(6) Hayashi, R.; Feltenberger, J. B.; Hsung, R. P. Org. Lett. 2010, 12,
1152.

(7) For reviews on chemistry of dienamides, see: (a) Overman, L. E.
Acc. Chem. Res. 1980, 13, 218. (b) Petrzilka, M. Synthesis 1981, 753. (c)
Campbell, A. L.; Lenz, G. R. Synthesis 1987, 421. (d) Krohn, K. Angew.
Chem., Int. Ed. Engl. 1993, 32, 1582. (e) Enders, D.; Meyer, O. Liebigs
Ann. 1996, 1023.

(8) For some examples of cyclic amido-dienes, see: (a) Martı́nez, R.;
Jiménez-Vázquez, H. A.; Delgado, F.; Tamariz, J. Tetrahedron 2003, 59,
481. (b) Wallace, D. J.; Klauber, D. J.; Chen, C. Y.; Volante, R. P. Org.
Chem. 2003, 5, 4749. (c) Wabnitz, T. C.; Yu, J.-Q.; Spencer, J. B.
Chem.sEur. J. 2004, 10, 484.

(9) For examples of 1,6-remote asymmetric inductions, see: (a) Paterson,
I.; Dlgado, O.; Florence, G. J.; Lyothier, I.; Scott, J. P.; Sereinig, N. Org.
Lett. 2003, 5, 35. (b) Arai, Y.; Ueda, K.; Xie, J.; Masaki, Y. Synlett 2001,
529. (c) Maezaki, N.; Matsumori, Y.; Shogaki, T.; Soejima, M.; Ohishi,
H.; Tanaka, T.; Iwata, C. Tetrahedron 1998, 54, 13087. (d) Maezaki, N.;
Matsumori, Y.; Shogaki, T.; Soejima, M.; Tanaka, T.; Ohishi, H.; Iwata,
C. Chem. Commun. 1997, 1755. (e) Troyansky, E. I.; Ismagilov, R. F.;
Strelenko, Y. A.; Samoshin, V. V.; Demchuk, D. V.; Nikishin, G. I.;
Lindeman, S. V.; Khrustalyov, V. V.; Struchkov, Y. T. Tetrahedron Lett.
1995, 36, 2293. (f) Stanway, S. J.; Thomas, E. J. Tetrahedron Lett. 1995,
36, 3417. (g) Carey, J. S.; Thomas, E. J. Tetrahedron Lett. 1993, 34, 3935.
(h) Enders, D.; Papadopoulos, K. Tetrahedron Lett. 1983, 24, 4967.

(10) For examples of thermal allene isomerizations, see: (a) Crandall,
J. K.; Paulson, D. R. J. Am. Chem. Soc. 1966, 88, 4302. (b) Bloch, R.;
Perchec, P. L.; Conia, J.-M. Angew. Chem., Int. Ed. Engl. 1970, 9, 798. (c)
Jones, M.; Hendrick, M. E.; Hardie, J. A. J. Org. Chem. 1971, 36, 3061.
(d) Patrick, T. B.; Haynie, E. C.; Probat, W. J. Tetrahedron Lett. 1971, 27,
423. (e) Lehrich, F.; Hopf, H. Tetrahedron Lett. 1987, 28, 2697. (f) Meier,
H.; Schmitt, M. Tetrahedron Lett. 1989, 30, 5873.

(11) For examples of allenamide isomerizations, see: (a) Overman, L. E.;
Clizbe, L. A.; Freerks, R. L.; Marlowe, C. K. J. Am. Chem. Soc. 1981,
103, 2807. Also see: (b) Farmer, M. L.; Billups, W. E.; Greenlee, R. B.;
Kurtz, A. N. J. Org. Chem. 1966, 31, 2885. (c) Kinderman, S. S.; van
Maarseveen, J. H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T.
Org. Lett. 2001, 3, 2045. (d) Trost, B. M.; Stiles, D. T. Org. Lett. 2005, 7,
2117.

(12) For a review on the synthesis of enamides, see: Tracey, M. R.;
Hsung, R. P.; Antoline, J.; Kurtz, K. C. M.; Shen, L.; Slafer, B. W.; Zhang,
Y. In Science of Synthesis, Houben-Weyl Methods of Molecular Transfor-
mations; Weinreb, S. M., Ed.; Georg Thieme Verlag KG: 2005; Chapter
21.4.

(13) For allenamide synthesis via amidative cross-coupling, see: (a)
TroShen, L.; Hsung, R. P.; Zhang, Y.; Antoline, J. E.; Zhang, X. Org. Lett.
2005, 7, 3081. (b) See ref 11d. For R-alkylation of allenamides, see: (c)
Xiong, H.; Hsung, R. P.; Wei, L.-L.; Berry, C. R.; Mulder, J. A.; Stockwell,
B. Org. Lett. 2000, 2, 2869.

(14) See Supporting Information.

Scheme 1. A New Torquoselective Manifold via 1,6-Induction

Table 1. Electrophilic Bromination of Allenamides

entrya equiv of 8 base time [min] yield [%]b

1 2.0 - 20 96
2 1.5 - 20 64
3 1.0 - 20 45
4 1.0 Et3N 45 82
5 1.0 K2CO3 45 59
6 1.0 DABCO 45 88

a 100 mg of 4 Å MS per 0.1 mmol of 8 were used for entries 1-3; 50
mg of 4 Å MS per 0.1 mmol of 8 were used for entries 4-6. b Isolated
yield. The E stereochemistry was determined using NOE. c Using NBS
afforded 29% yield of 10.
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noticeably when the stoichiometry of the allenamide was
decreased [entries 2 and 3]. We attribute this loss in the yield
to hydrolysis of the starting allenamide due to the byproduct
HBr; evidently the excess amount of allenamide used in
earlier attempts was simply being sacrificed to soak up HBr.
Consequently, we screened a number of bases and found
that the addition of 2 equiv of DABCO [entry 6] to be the
most optimal in effectively promoting this bromination
reaction without sacrificing excess allenamide.

Having established the optimized conditions for bromi-
nation, a diverse array of de noVo 2-halo-3-amidodi- and
-trienes were prepared in synthetically useful overall yields
with E-stereoselectivity [Table 2]. In addition to bromination,

chlorinations could also be accomplished in good yields using
NCS [see 22, entries 3, 5, and 11]. It is noteworthy that
brominations using NBS were less successful than when
using NCS and that the tribromide salt 9 was the best
bromination source. More importantly, this halogenation
protocol appears to be highly chemoselective in reacting

allenamides over alkynes [21, entry 2]. Subsequently, a range
of allenamides containing R-allylic systems could be em-
ployed in a chemoselective manner, leading to preparations
of chiral 2-halo-3-amidotrienes [entries 4-17].

In addition, 2-iodo-3-amidotrienes 25 and 29 could be
accessed using NIS in 69% yield and 96% yield from 13a
and 15a, respectively [entries 6 and 12]. Allenamides
containing protected alcohol [see 14] and protected amines
[see 15a and 15b] also underwent bromination, chlorination,
and iodination [see 26-29, entries 9-13].

Our success in accessing novel chiral 2-halo-3-amidotrienes
provided an invaluable opportunity for us to achieve diaste-
reoselective 6π-electron electrocyclizations via highly chal-
lenging 1,6-remote asymmetric induction. We proceeded to
examine thermal 6π-electron pericyclic ring closures of these
trienes to construct rare cyclic 1-halo-2-amidodienes. As shown
in Table 3, under thermal conditions in the range of 90-110

°C in toluene, chiral 2-halo-3-amidotriene 30 decomposed in a
few hours without observing any ring-closure products. How-

(15) (a) Padwa, A.; Ginn, J. D.; Bur, S. K.; Eidell, C. K.; Lynch, S. M.
J. Org. Chem. 2002, 67, 3412. (b) Hayashi, R.; Cook, G. R. Org. Lett.
2007, 9, 1311. (c) Kaneko, M.; Hayashi, R.; Cook, G. R. Tetrahedron Lett.
2007, 48, 7085.

Table 2. Synthesis of 2-Halo-Amido-Di- and Trienes

a All reactions were run in CH2Cl2 [0.1 M] with 2 equiv of DABCO
and 4 Å MS [50 mg/0.1 mmol] for 16 h at rt. b Isolated yield. c All di- or
trienes were exclusively E-selective.

Table 3. Stereoselective Electrocyclization

a All reactions were run in toluene [0.05 M] at 110 °C for 16 h in the
presence of 1 equiv of AlMe3. b Isolated yield. c Determined by 1H NMR.
d Product was aromatized.
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ever, interestingly, addition of AlMe3 effectively promoted the
electrocyclization of 30, leading to the desired cyclic product
34. We are not sure at this point the role of AlMe3; we screened
several Lewis acids including BF3-Et2O, TiCl4, ZnCl2,
Cu(OTf)2, PtCl2, and AuCl but rapid decomposition of ami-
dotrienes occurred.

While electrocyclization of chiral 2-halo-3-amidotriene 31
with substitution at the C5-position resulted in aromatization
of the initial product to give the aniline derivative 35 [entry 2],
we observed a high diastereoselectivity in the ring closure of
triene 23a [entry 3]. This high diastereoselectivity was rather
surprising because when we previously attempted electrocy-
clizations of 3-amido-6-alkyl-trienes,6 1,6-remote induction only
led to a diastereomeric ratio of 3:1 [see Scheme 1]. However,
it appears that, upon introduction of a halogen substitution, a
high level of 1,6-remote induction could be attained.

We subsequently screened trienes that are substituted chiral
oxazolidinones 23a-c [entries 3-7]; the benzyl-substituted
oxazolidinone 23a seemed to be the most appropriate chiral
auxiliary for this asymmetric transformation providing the
desired cyclic diene 36a in 95% yield with a dr of 90:10. The
stereochemistry of the newly formed center was determined
using the X-ray structure of a single crystal of 36b [Figure 1].

This diastereoselectivity is believed to be due to kinetic control
based on the control study of subjecting one of the minor
isomers [36c′] to the reaction conditions.16 Electrocyclization
of the chlorinated triene 24 afforded 37 in 61% yield with a
87:13 ratio, while the iodinated triene 25 gave 38 in 73% yield
with 90:10 dr. The nature of halogen does not appear to have
a significant impact on the diastereomeric ratio. Electrocycliza-
tions of other more exotic halogen-substituted trienes 26-29
were also examined [entries 8-12]. Ring-closure products
39-42 were attained in good yield and diastereoselectivity.
Unfortunately, triene 33 also led to the aromatized product
tetrahydronaphthlene 43 [entry 13].

A proposed model for the stereoselective electrocyclization
is shown in Figure 2. Based on B3LYP/6-31G* calculations,17

there is a 2.48 kcal mol-1 energy difference between two
possible conformers A and B for these halo-amidotrienes.
Although the Curtin-Hammett principle could be at play, if
assuming the more stable conformer A is also the operable one,
then the chiral auxiliary is blocking the lower face of the plane
of the triene. Proceeding through an aromatic transition state
for the 6π-electron electrocyclization, both bromine and the Ph-
substituent on the two terminal vinyl strands of the triene would
rotate in a disrotatory manner away from the Ph-ring on the
oxazolidinone auxiliary. This would lead to the formation of
the observed major diastereomer 36b.

We have accomplished here a synthetic access to rare
2-halo-3-amidodi- and -trienes via electrophilic halogenations
of allenamides. These novel trienes were useful to achieve
stereoselective electrocyclizations via 1,6-remote asymmetric
induction. Further mechanistic studies and applications of
this novel asymmetric manifold for pericyclic ring closure
are underway.
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(16) Independent heating of minor isomer 36c′ led to no observable
amount of the other compound.

(17) B3LYP/6-31G* calculation for other halo-amidotrienes.

Figure 1. X-ray structure of 36b.

Figure 2. A proposed mechanistic model.
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